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Importance

e Monitoring Verification and Accounting
(MVA)

— One of the important aspects of carbon sequestration
e Allows verifying if the sequestrated gas is in place
e Does not disturb the integrity of surrounding rocks

e For accuracy

— Available Geophysical tools must be calibrated with flow
simulation models

o Will allow if we can monitor and account for the injected CO, during
the post-injection scenarios.



General Overview

e Available geophysical monitoring tools
— Microgravity
— Electromagnetic (EM)
- Seismic
e Microgravity
— Sensitive to the variations in density
- Worked well in relatively shallow formations
— May not be suitable for our purpose
e EM
— Sensitive to the variations in resistivity
- May/may not be suitable for the depths of our interest
e Seismic
— Well accepted and well developed technology
— Most suitable for our purpose

e Here we will look at combining seismic with flow
simulation



General Overview- Seismic

Poisson’s Ratio Density (g/cm?3)
0.100.150.200.25 2 2.22.42.62.8 3.0
2.50 b
]
2.52 100% Brine —
— )
) N
“5’2'54 > 20% CO, ——
=
e < 50% CO, ——
2.58 {
D 80% CO, —
2.60 r

Density is more sensitive to CO, than Poisson’s ratio
How can we accurately predict density?



General overview (seismic)

e Generally P-wave (vertical
component/Pressure) seismic data
are used in reservoir characterization
— Relatively inexpensive
- We know how to interpret it

e [s P-wave seismic data sufficient to
obtain density information?

o | et’s first look at Amplitude Variation
with Offset/Angle (AVO/AVA)
methods.
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Assumptions in AVO/AVA

Assumption-1 = AVO/AVA provides narrow band model

— Provides P-, S- velocity and Model property
density contrasts T BG4
Y AVOIAVA | £ |3 Broadband
« High-frequency model 5] /Mo del
— To get the broadband model, \ AR
low frequency model
information must be @
: £ \
provided =

— Broadband model is
required for lithology and =
fluid prediction
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Assumptions in AVO/AVA

Assumption 2 > Fundamental Assumption

Prestack reflection amplitudes:

— Proportional to the plane P-P and/or P-S
reflection coefficients

Convolutional modeling assumption:
— Primary (mode-converted) reflections.
— No transmission loss.
— No other wave propagation effects.
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Wave Interference effects do not allow AVO/AVA to give optimum resulits.
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The correct approach

» Use a methodology that handles all these
wave propagation effects:
— Primary and mode-converted reflections
— Inter-bed multiples
— Transmission loss
— Ray-bending
 Step beyond conventional AVO
— Prestack waveform inversion (PWI)



General Overview- Seismic

Density (g/cm3)
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1.5 Density is more
accurately predicted in
1.6 Model 1 Multicomponent
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=
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Why multi-component data is sensitive to density?
Follows from the fundamentals of seismic wave propagation



Vertical Component
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Horizontal (Radial) Component
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Horizontal (Radial) Component
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This difference in the radial component response is the key to an
accurate extraction of density from multi-component seismic data



General Overview- Flow simulation

e Post-injection scenario

- Injected CO, bubble forms
a patchy saturation

e Controlled by rewetting and
trapping of CO, by bypassing
and snap-off mechanisms

— Accurate prediction requires

e Experiment with core samples
to incorporate the hysteresis
of capillary pressure and
relative permeabilities into
simulation models

e Combine simulation models
with seismic to study if such
post-injection patchy models
could be monitored and
accounted for




Project Objective

e Develop a realistic 3-D model

e Perform multi-phase flow simulation
— Include hysteresis of capillary pressure and relative
permeabilities
e Develop seismic waveform inversion
— Multicomponent

e Combine flow simulation with waveform
inversion

— if seismic waveform inversion can accurately predict CO,
plume movements within storage aquifers in post-
injection scenarios involving rewetting and trapping of
CO, by bypassing and snap-off mechanisms



General Overview- required workflow

e Generation of a 3-D model

— Must be realistic
e Based on Well and seismic data

— Based on data availability, Moxa-Arch and/or Rock-Springs
uplift are the ideal candidates
e Flow simulation and 3D synthetic seismograms

— Use core samples and run saturation experiments

e Based on the availability of core samples, Moxa-Arch and/or Rock-Springs
uplift are ideal candidates.

— Incorporate experimental results into simulation

- Inject CO, at some representative saline aquifer formations in
the original model

— Run flow simulation to output two/three post-injection models
— Compute 3-D synthetic seismograms

Phase-1



General Overview- required workflow

e Prestack waveform inversion

— Waveform based inversion of multicomponent seismic data

e Will include full wavefield response
— Primary reflections
- Mode-converted reflections
- Mode-converted multiples, etc.

e Calibration of inversion with Flow simulation models
— Most crucial component of our investigation

- Will allow seismic waveform inversion to predict post-injection
patchy saturation distribution within aquifer volumes

— Will involve coordination of expertise between
Geology/Geophysics and Petroleum Engineering

Phase-2



General Overview- required workflow

e Processing of 3-D multicomponent seismic data
— Original (baseline) data
— Post-injection (time-lapse) data
- Will use Omega-2 processing Software with consulting support
from WesternGeco

e 3-D prestack waveform inversion
- Inversion of 3-D baseline and time-lapse data volumes
— Calibration of inverted models with flow-simulation models

- Prediction of the patchy CO, saturation distribution from
inversion

e Project completion
— Finalize the project report
— Transfer the technology to the real sequestration sites

Phase-3



Project Status- Phase-1

3-D model generation, sequestration and flow simulation, and
computation of 3-D seismic responses

e Preliminary 3-D

Model using Well-

data:
— Completed

e 3-D Seismic data

— PSTM processing
completed

e Final 3-D Model

— Nearing completion
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Courtesy Petrel Software (Schlumberger)



Detailed model
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Project Status Phase-2

e Already under

development

— Major effort of this
project
— Inversion at single

location
e Developed

— Calibration with flow
simulation
e Will start soon the flow
simulations are
completed
— Inversion at multiple
locations
e Being developed

Development of 3-D prestack multicomponent
seismic waveform inversion

Density (g/cm3)
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Conclusion

e Project description
— Objective
— Importance

e General Overview
— Seismic Aspects

- Simulation Aspects

e Definition and description of various tasks and
subtasks

e Projected Timeline
— Three years
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